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Abstract
Network Traffic Prediction is an important tool for managing
network congestion and security. It aims to predict future
network traffic flows based on previous data, using either
time-series or machine learning approaches. Efficient predic-
tion can improve quality of service and lower operating costs
for network service providers, and can be used to prevent
Distributed Denial of Service attacks too. Multiple studies
have been conducted comparing these approaches, with the
results suggesting that Deep Learning techniques learn net-
work traffic patterns more efficiently and provide more accu-
rate results. Of these approaches, Long Short Term Memory
appears to be the most accurate method. However, there
is little mention of the computational resources required
to run these algorithms, and whether they are optimised
for large networks. Further research to determine whether
these approaches are viable for less resourced systems and
whether they perform well on less intensive network traffic
is required.

CCS Concepts: • Computing methodologies → Unsu-
pervised learning;Neural networks; •Networks→Net-
work performance analysis.

Keywords: Autoregressive IntegratedMovingAverage, Gated
Recurrent Unit, Long-Short TermMemory, Mean Squared Er-
ror, Network Traffic Prediction, Recurrent Neural Network,
Time Series

1 Introduction
In today’s world, the Internet and its applications have be-
come a vital tool for all types of users. As more individuals
are gaining access to the internet for the first time, and oth-
ers increasing their usage, networks are having to manage
their limited bandwidth effectively. Covid-19 especially, has
caused a significant surge in data traffic [3]. Part of this traf-
fic was caused by the move to online-learning, and shift from
office to work from home. Network Traffic Prediction would
help alleviate any congestion issues which may arise, as net-
work operators would be better informed of when increased
congestion can be expected and can then make adjustments
accordingly. Predicting network traffic in the short term aids
in dynamic resource allocation, while longer term prediction
provides insight into how a service provider may improve
their network capacity and performance [16].

This paper investigates the different approaches that have
been used for predicting Network Traffic. There will be men-
tion of preprocessing of network traffic data as a way to
improve prediction results by means of wavelet transforma-
tion and k-means clustering. We explore the Time Series
approach of Autoregressive Integrated Moving Averages
(ARIMA), Deep Learning techniques such as Recurrent Neu-
ral Networks and their subsets: Long Short Term Memory,
Gated Recurrent Units and Stacked Autoencoders. Previous
work done in this field suggests these are the most effective
methods for network traffic prediction.

Recurrent Neural Networks (RNNs) are particularly pow-
erful models that have demonstrated high accuracy in time
series forecasting [21], something ARIMA cannot model [22].

2 Background
2.1 Network Traffic Data
Network traffic refers to the data, made up of packets, mov-
ing across devices at any point in time. It can be hard to
deduce and label these patterns by just monitoring traffic
data. Trends on a particular day do not necessarily correlate
to the next day, and seemingly arbitrary spikes of traffic
need not be confined to particular time periods. Past stud-
ies [25, 27] have used network traffic data from two public
datasets: GEANT and Abilene, in order to train and test
prediction models.

3 Data Preprocessing
Data preprocessing for network traffic data involves extract-
ing the salient features from the dataset.

3.1 K-Means Clustering
A method for grouping data together into K sets [15], which
works by selecting K initial cluster centres. It iteratively
refines the clusters by assigning each element to the closest
cluster, with each cluster center updated to be the mean of
its associated elements.

3.2 Wavelet Transformation
Wavelet Transform is a technique that allows for data of
differing frequencies to be processed, while retaining local-
ization information [23]. This is especially useful for network
traffic data, since it is measured over multiple time scales



and can be reconstructed into high and low-frequency wave-
lengths.

3.3 Combining Data Preprocessing
Zang et al. [28] applied a K-means clustering algorithm to
group network base stations into groups where base stations
in one group are geographically adjacent with correlated
traffic flows. Wavelet decomposition was additionally used
to preprocess the time series traffic data by decomposing
it into low and high-frequency components. The final step
of preprocessing was to reconstruct both the low and high-
frequency components back into time series by wavelet re-
construction. Their results suggested that running the data
through an Elman Neural Network - defined as a simple re-
current neural network - yielded superior results compared
to time series methods. However, they did not test their
method on any other deep learning approaches which may
have yielded more accurate prediction results.
Chen et al. [5] took a different approach, by applying chaotic
analysis to network prediction data. They looked at the pre-
diction error in order to feed the analysis generated into a
neural network, which eventually was used to determine
whether a network was undergoing a Distributed Denial of
Service attack. This could potentially be an area to explore
if network security is a priority and has implications for
network service providers.

4 Time Series Approaches to Prediction
ARIMA is a statistical model that is used for time series
forecasting. It is derived from the notion that future val-
ues can be predicted by using past values and white noise
characteristics [2]. Time series are successful in predicting
a few time-steps ahead, but the accuracy depends on data
exhibiting seasonality [13]. Network spikes are difficult to
anticipate and methods deviate significantly on volatile real
statistics. Statistical techniques also fail to learn long-range
dependency [13].

Holt-Winters [4] is another time series approach that is
well suited to producing short term forecasts by using ex-
ponential smoothing. Jirsik et al. [11] compared network
traffic prediction using both ARIMA and Holt-Winters, and
observed that ARIMA produced more accurate predictions.
However, Holt-Winters was far less computationally expen-
sive.

Fractionally integrated moving average model (FARIMA)
[6] is a long-range dependent model that is an extension of
the ARIMA model, which differs by allowing a non-integer
value of the difference parameter. Just like ARIMA, the com-
putational complexity of FARIMA is O(N2). By comparing
FARIMA and ARIMA models to predict network traffic, it
was shown by Feng and Shu [6] that FARIMA was more

Figure 1. Example of a neural network architecture. It con-
sists of input and output units which are connected to the
external environment and a hidden layer comprising of nodes
that connect to one another [8]

accurate since it is able to capture both short and long-term
dependencies in the data.

5 Neural Networks
Neural Networks (NN) are a subset of Machine Learning,
inspired by how neurons in the human brain communicate.
Their structure is comprised of an input, output and either
one or more hidden layers and nodes that connect to one
another. These nodes have attributes, a weight and threshold
that when a node exceeds, passes along data to the next layer
[8]. These networks are trained using data in order to opti-
mize their performance and improve their accuracy, which is
a measure of how close the predicted value is to the expected
value. In general, machine learning models are evaluated on
their accuracy, measured in Mean Squared Error.

MSE =
1
𝑛

𝑛∑
𝑡=1

𝑒2𝑡 where e is the error, or the observed value

subtracted from the actual value.

Feng and Shu [6] used both FARIMA and a NN to predict
network traffic, finding that there was very little difference
in prediction accuracy, with FARIMA having the slight edge.
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5.1 Recurrent Neural Network
A Recurrent Neural Network (RNN) is an extension of the
generic Neural Network which is specialised for process-
ing sequential data. The main difference being the ability
of outputs from layers being able to cycle back into the net-
work. Here the back-propagation algorithm is employed to
factor in dependencies among the data, creating an internal
memory that facilitate learning of time series data [8]. An
RNN can suffer from the vanishing gradient problem, which
occurs when the network is unable to send back useful gra-
dient information from the output layers to those layers that
are more shallow. If this occurs, the RNN loses its ability
to consider long term dependencies in calculations [1]. It is
for this reason that Krishnaswamy et al. [12] propose that
using an RNN is unsuitable for network traffic prediction,
suggesting rather that a Long Short Term Memory should
be used rather to mitigate the vanishing gradient.

Ramakrishnan and Soni [22] broke down the network traf-
fic into smaller time intervals of 5 seconds, which may be
more indicative of when large changes in network traffic
flows could occur (e.g. Concert tickets being released). In or-
der to train their RNNs they used a sliding window, meaning
previous traffic flow values were used as features to predict
the next n traffic flows. Part of the data that was used was
traffic collected from internal requests between two virtual
machines, while the other half was from public data sets. The
former is potentially useful, since some smaller networks
will see far less traffic and therefore may be better suited to
different algorithms. Their results suggested that using an
RNN approach was twice as accurate as ARIMA on smaller
networks. The implication of this finding is that if the RNN
is not too computationally expensive, it would be well suited
for this situation. The need is therefore to develop and test
the RNN on different hardware setups and see what the min-
imally viable solution could be for less resourced networks.

Vinayakumar et al. [27] ran their RNN experiments on a
Graphical Processing Unit (GPU), but did note that shallow
networks were run on Scikit-learn. Therefore it may not be
necessary for smaller networks to train their model on a
GPU, but this needs to be investigated further. However, the
data show that RNNs are much quicker to train than Stacked
Auto Encoders or Multilayer Perceptrons, also using fewer
layers and neurons [20]. One further point they make is that
it may be beneficial to train the models on more powerful
hardware, such as a High Performance Computer.

Of the approaches discussed, none had taken into account
the timestamp and day of the week that the traffic flows
were observed. This is an important feature to consider since
network traffic flows vary depending on the time of day and
week. Typically, peak usage occurs during the early evening

and the least usage is observed during the period of mid-
night until 5am [17]. Tokuyama et al. [24] looked at using
one-hot encoding - each input data encoded to a 0-1 vector
- to determine whether they could improve on prediction
accuracy. Two new input layers were added and merged with
the existing RNN they had built. This approach is an impor-
tant step to adding context to the prediction, as often RNN
models misunderstand the relationship between data [24].
Their findings are of particular importance as it illustrates
that adding computational complexity is not a silver bullet,
as the one-hot encoding did not make a noticeable difference
in the observed RMSEs.

5.1.1 Long Short Term Memory. An LSTM is a type of
RNN, which is formed by adding a short and long term mem-
ory unit to a RNN [9]. The addition of memory units allows
the network to deal with the correlation of time series in the
short and long term, and store dependencies that it deems
important from earlier epochs of training [29]. Addition-
ally, in order to control the use of historical information, the
model uses an in, forgetting and out gate. Once an LSTM is
trained, the predicted output relies on the input it receives,
and short and long term states that are fed back to it. In order
to minimise the Mean Squared Error, the LSTM needs to be
trained with optimal parameters.

Jirsik et al. [11] ran an experiment comparing LSTM,ARIMA
and Holt-Winters time series approach. The time complex-
ity observed indicated that both ARIMA and LSTM took in
order of magnitude ten times longer to compute compared
to Holt-Winters for both time periods predicted. ARIMA
was faster to compute predictions for 1 hour into the fu-
ture, while LSTM was faster for 5 minute intervals. They
suggested that this time complexity could be reduced by
changing the optimizer used in the training and changing
the initial weights for the LSTM. This has important impli-
cations as it demonstrates that there is a trade off between
complexity and accuracy, since Holt-Winters was the least
accurate at predicting network traffic. Further findings from
Vinayakumar et al. [27] demonstrated that LSTM has more
computational complexity than Gated Recurrent Units, but
outperformed RNNs by producingmore accurate predictions.

Krishnaswamy et al. [12] discussed the differences be-
tween using an Simple and Stacked LSTM learning approach.
Both have advantages, with Stacked being more accurate
by adding more LSTM layers at the cost of higher computa-
tional complexity. There is a a trade off here, but it allows
network operators to decide what is more practical for their
needs, accuracy or computational efficiency. Importantly in
their training, they noted that adding extra layers did not
cause a noticeable change in accuracy. In fact, the Simple
LSTM which requires the least resources had the lowest
Mean Squared Error overall, and tanh proved to be the best
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activation function. There is no mention of whether the
training took place on a GPU, so it is important to test these
methods with different activation functions to determine if
there is a more accurate approach, and only on a CPU since
not all network providers will have access to a GPU. One
limitation that needs further investigation is whether these
LSTM algorithms perform as well for smaller traffic volumes
that one may see on a community network, as the results
above were for links of capacity of over 100GB/s.

Another approach that was taken and yielded an improve-
ment over LSTM was to create a parallel LSTM architecture.
This was developed by [14] as they noted that prediction of
network traffic does a poor job of detecting bursts of net-
work traffic. Their proposed architecture comprised of one
LSTM which used actual network traffic data, and a second
LSTM which used both the network traffic data and a burst
pulse series. Results show that the parallel LSTM improved
prediction accuracy on average by 37 percent. This could
have important implications for emergency networks, when
ensuring the network can cope with a burst of traffic is vital
in the event of an emergency.

5.1.2 Gated Recurrent Unit. The Gated Recurrent Unit
(GRU) is an improvement based on LSTM [10]. It is able to
factor in dependencies based on different time scales, and
unlike LSTM, it does not have separate memory units. Any
feature that is deemed important by the GRU is maintained,
not overwritten [25].

Troia et al. [25] demonstrated a novel approach to the
network traffic prediction problem, by combining a GRU
and Evaluation Automatic Module (EAM). The GRU was
used to train the prediction model, while the EAM evalu-
ated performance based on the prediction error during each
iteration. By comparing the error in each iteration, it can
choose the lowest error while allowing the model to keep
training as well in case a better approximation is found. Their
model was used to predict traffic for the next hour, which is
a large timescale for network traffic, since fluctuations can
happen in much shorter time periods. The results showed
that the predicted traffic values were far below the threshold
the network operators had anticipated, and shows that this
implementation could save resources since there is a large
surplus of bandwidth availability.

5.2 Stacked Autoencoder
An autoencoder is an unsupervised deep learning algorithm.
It takes in a number of inputs and returns the same number
of outputs, aiming to mimic the input by compressing it and
applying some activation function [18]. This process helps
the network to learn the most salient features of the data. In
a stacked autoencoder (SAE), each output layer is connected
to the input of the next layer [20]. These models have been

used in the past for network security, focusing on network
intrusion detection [26].

Oliveira et al. [20] noted that SAEs were the longest model
to train since they add additional complexity, when compared
to RNNs. Even with this complexity, they did not produce
better results than a RNN. In an experiment, Oliveira et al.
[19] found that even a Multilayer Perceptron (MLP) which is
a far more simple model had superior prediction results over
all time frames. An MLP is less computationally expensive
than an SAE and it does not use pre-training either. SAE as a
method to predict network traffic will be investigated further,
even though preliminary findings indicate that they it is not
advantageous to use compared to more simple and cheaper
approaches. It is possible that applying pre-processing of the
network traffic data may improve prediction outcomes.

6 Discussion
Most time-series algorithms are designed to predict one time-
step ahead, and predicting multiple steps results in an error
build-up that is amplified as prediction goes deeper into fu-
ture [12]. Discrete wavelet transform (DWT) scopes out both
location and frequency information from a signal. Wavelet
transform when used in forecasting models can improve the
accuracy of the forecast [16].

An attempt to create a network traffic prediction model
by creating a forecast vector composed of an ARIMA and
RNN component was made by [16]. They used DWT to de-
compose a network traffic time series into a vector which
allowed the data to be processed for ARIMA. Residual Sum
of Squares (RSS), or the sum of squared errors of predic-
tion was calculated in order to determine which parameters
were to be used in the ARIMA model. Once both the ARIMA
model had been optimised and the RNN had been trained,
they combined the forecasts to try and predict network traf-
fic. Their data was of differing time periods - per day, hour
and five minutes - which ensured that all time periods are
evaluated over, and came from a real world Internet Service
Provider which means the data is reflective of the real world
and what could be expected. Their findings indicated that at
any time interval, measured in Normalised Residual Mean
Squared Error (NRMSE), combining both an ARIMA and
RNN approach yielded superior results as opposed to using
an ARIMA approach, but not always better than just using a
RNN approach. This is potentially significant since adding
time series calculations increases computational cost which
may not be suitable for less resourced networks. They add
that this approach is potentially easy to deploy at data cen-
ters, but fail to take into account smaller network providers.
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Figure 2. An example of an LSTM cell [7]. The cell takes an input of the current time step, the output from the previous LSTM
and the memory from the previous unit. The cell makes a decision by considering these three inputs, generating a new output
and altering its memory.

7 Conclusions
Network traffic is increasing in volume as more users are
connecting to the internet, putting pressure on networks
to adjust. Time Series alone is not a suitable approach to
network traffic prediction since it is unable to effectively
take into account spikes in network traffic [13].

Data Preprocessing has also yielded accurate predictions
[5, 28], not only for network traffic predictions but also for
detecting DDOS attacks, however it is unclear whether these
approaches will work with other approaches besides RNNs.

Multiple approaches to predicting network traffic were
investigated, with the findings suggesting that an increased
computational complexity does not translate into more ac-
curate predictions [19, 20]. This is important since some
networks have access to less resources to dedicate to traffic
prediction.

The findings conclude that Long Short Term Memory pro-
duces more accurate network traffic predictions than Recur-
rent Neural Networks [27], and that Stacked Autoencoders
are not as well suited as LSTMs [19]. However, it is unclear
whether a Gated Recurrent Unit is more accurate than LSTM,
and more work needs to be done here. Combining it with

RNN does yield superior results, but this additional compu-
tational cost may deem it only feasible for larger and more
resourced networks.
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